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As machine learning models have become more capable of dealing with complex data, they

have been entrusted with an increasing array of predictive tasks. However, with growing re-

liance on model predictions, being able to assess whether a given model prediction is reliable has

become equally important. Uncertainty quantification (UQ) plays a critical role in this context

by providing a measure of confidence in a model’s predictions, and the quantified uncertainty

is considered correct if it is calibrated. In this proposal, I address the problem of optimizing

for calibration, especially with regression models which output a distribution over continuous-

valued outputs. In my initial work, I propose a collection of methods and techniques to train a

quantile model end-to-end with differentiable loss functions that optimize directly for the cal-

ibration of the predictive quantiles. This works falls under a class of pre-hoc methods which

aim to improve calibration during the training of the model and distinguishes itself from the

relatively richer line of work in post-hoc calibration, which aim to calibrate a pre-trained pre-

dictive model. Afterwards, I introduce a method to feasibly extend the notion of calibration to

multi-dimensional distributions and describe a post-hoc calibration (or recalibration) algorithm. I

further discuss how distributional predictions are utilized in applications such as decision-making

tasks or model-based reinforcement learning and point out that each application setting requires

different qualities for the distributional prediction. In light of this observation, I propose several

research directions which study applications of using distributional predictions. In particular, I

propose re-investigating proper scoring rules as a tool for eliciting good/useful behavior from

distributional predictions in a pre-hoc manner.
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CHAPTER 1

Introduction

As machine learning models have become more capable of dealing with complex data, they have

been entrusted with an increasing array of predictive tasks. These tasks range anywhere from

predicting the trajectory of vehicles for autonomous driving [Galvão and Huda, 2024], predicting

the structure of protein [Jumper et al., 2021], and even modeling the dynamics of plasma dur-

ing nuclear fusion reactions [Char et al., 2024]. With growing reliance on model predictions for

increasingly complex tasks, one important question a user of these models may ask is whether

these model can be trusted. Uncertainty quantification (UQ) plays a critical role in this context by

providing a measure of confidence in a model’s predictions. Given that most machine learning

models are designed and trained in a probabilistic manner, we can leverage the predicted proba-

bilities as a means to express uncertainty: the model can output highly diffuse probabilities when

it is uncertain, and concentrated probabilities when it is confident.

When these predicted probabilities align with the frequency of true outcomes, the probabil-

ities are said to be calibrated. Calibration is an interpretable metric for UQ which measures the

alignment between predicted probabilities and empirical frequencies. This thesis will focus on

eliciting calibrated probabilities from machine learning models and further investigate its utility

in downstream applications.

Overview of Proposal In the first section of this proposal, we will highlight prior work on

optimizing calibration of univariate probabilistic regression models. Afterwards in the second

section, we will discuss additional prior work which extend calibration to the multivariate re-

gression setting. The multivariate setting necessitates alternate definitions of calibration, and

correspondingly new methods to elicit calibration from the predicted probability distributions.

In the third and final section, we will discuss the utility of calibration in downstream applica-

tion settings. We will touch upon existing work which aim to bridge the gap between optimizing

for calibration in UQ and deriving optimal utility when using the UQ models to drive decision-

making. We make the observation that the aspect of UQ that actually matters will be dictated by

the problem setting that uses the UQ model, and calibration may not be the most consequential

metric in predicting the utility the UQ model will provide. We make the claim that the ultimate
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utility of a predictive distribution or model is the performance it achieves in the downstream

task it was designed for. Along this argument, we present several future research directions that

specifically address using predictive distributions. One such application is in mixture of experts

architectures, where we propose improving the routing mechanism for higher accuracy and/or

efficiency in inference. We also propose re-visiting proper scoring rules as a method to elicit

various utility from model predictions.
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CHAPTER 2

Prior Work

2.1 Preliminaries and Background

We first lay out the notation, terminology, and class of models considered in this manuscript.

Then we provide an overview of evaluation metrics in UQ and demonstrate how the pinball loss

may be inadequate both as an evaluation metric and as an optimization objective.

2.1.1 Notation

Upper case letters X, Y denote random variables, lower case letters x, y, denote their values, and

calligraphic upper case letters X ,Y denote sets of possible values. We use x ∈ X to denote the

input feature vector and y ∈ Y to denote the corresponding target. Additionally, we consider

the regression setting where Y ⊂ R and X ⊂ Rn
. We use FX , FY |x, FY to denote the true

cumulative distribution of the subscript random variable. For any x ∈ X , we assume there exists

a true conditional distribution FY |x over Y , and we assume Qp(x) denotes the true pth
quantile of

this distribution, i.e. FY|x(Qp(x)) = p. Any estimates of the true functions F,Qp will be denoted

with a hat, F̂ , Q̂p. We will specifically refer to any family of estimates for Qp, with p ∈ (0, 1),

as a “quantile model”, denoted Q̂ : X × (0, 1) → Y . Unless otherwise noted, we will always

consider the conditional problem of estimating quantities in the target space Y , conditioned on a

value x ∈ X .

2.1.2 Assessing the Quality of Predictive UQ

While various metrics have been proposed to assess the quality of UQ, there has been a great

deal of recent focus on the notions of calibration and sharpness [Fasiolo et al., 2020, Cui et al.,

2020, Zhao et al., 2020, Tran et al., 2020, Song et al., 2019, Kuleshov et al., 2018, Guo et al., 2017,

Gneiting et al., 2007]. We introduce calibration here, but for a more thorough treatment, see Zhao

et al. [2020]. Broadly speaking, calibration in the regression setting requires that the probability
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of observing the target random variable below a predicted pth
quantile is equal to the expected

probability p, for all p ∈ (0, 1). We refer to the former quantity as the observed probability and

denote it pobs(p), for an expected probability p, which we will write as pobs
when it is clear from

context. Calibration requires pobs(p) = p, ∀p ∈ (0, 1). From this generic statement, we can

describe different notions of calibration based on how pobs
is defined.

A model is individually calibrated if it outputs the true conditional quantiles, i.e. Q̂p(x) =

Qp(x). In this case, we define the observed probability to be

pobs

indv(p, x) := FY|x(Q̂p(x)), ∀x ∈ X , ∀p ∈ (0, 1). (2.1)

In words, this requires that the probability of observing y below the quantile prediction is equal to

p, at each point x∈ X , individually. If we can verify this property for all x ∈ X , then by definition,

we will know the quantile output is correct and precisely the true conditional quantile. However,

individual calibration is typically unverifiable with finite datasets in the assumption-less case

[Zhao et al., 2020].

A relaxed condition is average calibration. In this case, we define the observed probability

to be

pobs

avg(p) := Ex∼FX [FY|x(Q̂p(x))], ∀p ∈ (0, 1), (2.2)

i.e. the probability of observing the target below the quantile prediction, averaged overFX, is equal

to p. Average calibration is often referred to simply as “calibration” [Cui et al., 2020, Kuleshov

et al., 2018]. Given a dataset D = {(xi, yi)}Ni=1, we can estimate pobs

avg(p) with p̂obs

avg(D, p) =
1
N

∑N
i=1 I{yi ≤ Q̂p(xi)}.

Note that if our quantile estimate achieves average calibration then p̂obs

avg → p as N → ∞,

∀p ∈ (0, 1).

The degree of error in average calibration is commonly measured by expected calibration error
Tran et al. [2020], Cui et al. [2020], Guo et al. [2017], ECE(D, Q̂) = 1

m

∑m
j=1

∣∣p̂obs

avg (D, pj)− pj
∣∣
,

where pj ∼ Unif(0, 1).

It may be possible to have an uninformative, yet average calibrated model. For example, quan-

tile predictions that match the true marginal quantiles of FY will be average calibrated, but will

hardly be useful since they do not depend on the input x. Therefore, the notion of sharpness is

also considered, which quantifies the concentration of distributional predictions [Gneiting et al.,

2007]. For example, for non-parametric predictions, the width of a centered 95% prediction in-

terval is often used as a measure of sharpness. There generally exists a tradeoff between average

calibration and sharpness [Gneiting et al., 2007, Murphy, 1973].

Recent works have suggested a notion of calibration stronger than average calibration, called
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Figure 2.1: (a) Test loss continues to decrease until the validated epoch. (b-c) At the validated

epoch, SQR (optimizes pinball loss) is highly miscalibrated while sharper than the true sharpness

level. Cali (optimizes proposed calibration loss) is better calibrated while less sharp than the true

sharpness.

adversarial group calibration [Zhao et al., 2020]. This stems from the notion of group calibration
[Hébert-Johnson et al., 2017, Kleinberg et al., 2016], which prescribes measurable subsets Si ⊂ X
s.t. Px∼FX(x ∈ Si) > 0, i = 1, . . . , k, and requires the predictions to be average calibrated within

each subset. Adversarial group calibration then requires average calibration for any subset of X
with non-zero measure. Denote XS as a random variable that is conditioned on being in the set S .

For adversarial group calibration, the observed probability is

pobs

adv(p) := Ex∼FXS
[FY|x(Q̂p(x))], ∀p ∈ (0, 1), ∀S ⊂ X s.t. Px∼FX(x ∈ S) > 0. (2.3)

With a finite dataset, we can measure a proxy of adversarial group calibration by measuring the

average calibration within all subsets of the dataset with sufficiently many points.

Intuitively, individual calibration inspects the discrepancy between pobs
and p for individual

inputs x ∈ X , adversarial group calibration relaxes this by inspecting any subset of X with non-

zero measure, and average calibration relaxes this further by considering the full distribution of

X .

One alternative family of evaluation metrics is proper scoring rules [Gneiting and Raftery,

2007]. Proper scoring rules are summary statistics of overall performance of a distributional pre-

diction and consider both calibration and sharpness jointly [Gneiting et al., 2007]. For example,

negative log-likelihood (NLL) is a proper scoring rule that is commonly used with density pre-

dictions [Detlefsen et al., 2019, Pearce et al., 2018a, Lakshminarayanan et al., 2017]. For quantile

predictions, one proper score is the check score, which is identical to the pinball loss. Since proper

scoring rules consider both calibration and sharpness together in a single value, they can serve as

optimization objectives for UQ. For example, optimizing the pinball loss is the traditional method
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in quantile regression [Koenker and Bassett Jr, 1978], and many recent quantile-based UQ meth-

ods focus on optimizing this objective [Rodrigues and Pereira, 2020, Tagasovska and Lopez-Paz,

2019, Cannon, 2018, Xu et al., 2017].

2.2 Quantile Methods for Calibrated Univariate Probabilis-
tic Regression

This section is based on Chung et al. [2021].

Given that the definition of calibration is based on quantiles, we investigate the standard

method of learning quantiles, which is the pinball loss. Specifically, we note that the balance

between calibration and sharpness implied by the pinball loss is arbitrary and depends on the

expressivity of the model class—and with highly expressive models, this balance can be heavily

skewed towards sharpness. In their seminal work on probabilistic forecasts, Gneiting and Raftery

[2007] contend that the goal of probabilistic forecasting is to “maximize the sharpness of the

predictive distribution subject to calibration”, i.e. calibration should be first achieved and then

sharpness optimized. We show that common machine learning methods that use the pinball loss

objective may in fact lead to an arbitrary and miscalibrated UQ.

Proposition 1. Consider a finite dataset D, the pinball loss ρτ and a quantile model f : X ×
(0, 1) → Y that is average calibrated on D, i.e. ECE(D, f) = 0. Then there always exists another
quantile model g : X × (0, 1)→ Y , such that, for any quantile level τ ∈ (0, 1), g has lower pinball
loss than f onD, i.e.

∑N
i=1 ρτ (yi, gτ (xi)) <

∑N
i=1 ρτ (yi, fτ (xi)), but worse average calibration than

f , i.e. ECE(D, g) > ECE(D, f).
Proof: The proof is given in Appendix of Chung et al. [2021].

This proposition essentially states how the pinball loss can become detached from calibration,

and we show its practical ramifications via a synthetic example in Figure 2.1 (experiment details

in Appendix of Chung et al. [2021]).

We first note in Figure 2.1 (a) and (b) that even while the pinball loss decreases on the test

set, test calibration worsens (while sharpness improves). Further, at the best validation epoch,

optimizing the pinball loss converges to a solution that is sharper than the true noise level. Note

that a UQ that is sharper than the true noise level will never be calibrated (meanwhile, a less

sharp prediction can still be calibrated, e.g. the marginal distribution FY). These pitfalls motivate

our methods in Section 2.2.1.
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2.2.1 Methods
We propose four methods that aim to produce an improved quantile model. The first is a model-

agnostic procedure that relies on conditional density estimation (Section 2.2.1.1). To address set-

tings where density estimation may be difficult, we then propose two loss functions to optimize

with differentiable models: the combined calibration loss (Section 2.2.1.2), which directly opti-

mizes calibration and sharpness, and the interval score (Section 2.2.1.3), which is a proper scoring

rule for centered intervals. Finally, we propose a group batching method (Section 2.2.1.4) that can

be applied to the batch optimization procedure for any loss function (e.g. combined calibration

loss, interval score, and even pinball loss) to induce better convergence towards adversarial group

calibration.

2.2.1.1 Utilizing Conditional Density Estimation for Model Agnostic QR

One drawback of many existing quantile-based UQ methods is that their training procedure re-

quires differentiable models. In fact, most UQ methods require a specific class of models because

of their modeling structure or their loss objective (e.g. Gaussian processes [Rasmussen, 2003],

dropout [Gal and Ghahramani, 2016], latent variable models [Koller and Friedman, 2009], simul-

taneous pinball loss [Tagasovska and Lopez-Paz, 2019], and NLL-based losses [Lakshminarayanan

et al., 2017]). This model restriction can be especially unfavorable in practical settings. A domain

expert with an established point prediction model and compute infrastructure may want to add

UQ without much additional overhead.

To address these issues, we can consider the following model-agnostic procedure. Instead

of optimizing a designated loss function, we can consider splitting the given problem into two

parts: estimate conditional quantiles directly from data, then regress onto these estimates. The

benefit of this method is that, granted we can estimate the conditional quantiles accurately, we can

use any regression model to regress onto these quantile estimates. Further, this regression task

directly targets the goal of producing the true conditional quantiles (i.e. individual calibration).

This procedure, which we refer to as Model Agnostic QR (MAQR), is outlined in Algorithm 1.

MAQR is based on the key assumption that nearby points in X will have similar conditional

distributions, i.e. if xj ≈ xk then FY|xj
≈ FY|xk

. Given this smoothness assumption, we can

group neighboring points to estimate the conditional density at each locality overX , with locality

determined by the hyperparameter dN (Algorithm 2, line 2). We then construct an empirical CDF

with the group of neighboring points, and conditional quantile estimates are produced with this

empirical CDF. These estimates are collected into D (Algorithm 1, line 6), which is ultimately

used as the training set for the quantile model ĝ.

In practice, we perform these steps with residuals, by first estimating a mean function f̂ (Algo-

rithm 1, line 1). This practical choice stems from existing works in conditional density estimation,

8



Algorithm 1 MAQR

1: Input: Train data {xi, yi}Ni=1, trained re-

gression model f̂(x)
2: Calculate residuals ϵi = yi − f̂(xi), i ∈

[N ], and denote the residual dataset R =
{xi, ϵi}Ni=1

3: Initialize D ← ∅
4: for i = 1 to N do
5: Di ← CondQuantilesEstimators(R,

i) (Algorithm 2)

6: D ← D ∪Di

7: end for
8: Use D to fit a regression model ĝ

ĝ : (x, p) 7→ ϵ
9: Output: f̂ + ĝ

Algorithm 2 CondQuantilesEstimators

1: Input: Dataset {xi, ϵi}Ni=1, point index k ∈
[N ]

2: Ek,dN ← {ϵi : dist(xk, xi) ≤ dN , i ∈ [N ]}
3: Construct an empirical CDF with Ek,dN to

produce F̂E|xk
: ϵ 7→ p ∈ [0, 1]

4: Initialize D ← ∅
5: for each ϵj in Ek,dN do
6: p̂k,j ← F̂E|xk

(ϵj)
7: D ← D ∪ {xk, p̂k,j, ϵj}
8: end for
9: Output: D

which suggests that having 0 conditional mean in the data provides benefits in terms of lower

asymptotic mean squared error in the conditional density predictions [Hyndman et al., 1996].

Further, this demonstrates how MAQR can be readily applied in the application setting where an

accurate point prediction model often already exist.

Algorithm 1 is a specific implementation of a more general model-agnostic algorithm, in

which we directly estimate conditional quantiles from the data with tools from conditional den-

sity estimation. We note that using KDEs for conditional density estimation is a well studied

problem with theoretical guarantees [Holmes et al., 2012, Hyndman et al., 1996, Stute et al., 1986].

In the case the distance in X is measured using a uniform kernel with mild assumptions on the

bandwidth, Algorithm 1 falls under the guarantees stated by Stute et al. [1986].

Theorem 1 [Stute et al., 1986]. Assume Y ⊂ R, X ⊂ Rn, dist(xi, xj) := |xi − xj|∞, and that F̂E|x

is constructed using the procedure given in line 5 of Algorithm 1 (i.e. xi = x). Further assume that,
as N → ∞, dN → 0 and that

∑
N≥1 exp(−ρNdnN) < ∞, ∀ρ > 0. Then, as N → ∞, for almost

all x ∈ X , supϵ[F̂E|x(ϵ)− FE|x(ϵ)]→ 0 with probability 1.

This theorem states that in the limit of data, for almost all x ∈ X , the CDF estimate F̂E|x will

converge uniformly to the true CDF FE|x with probability 1. The dataset, D, will therefore be

populated with good estimates of the conditional quantile and quantile level pair for x.
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2.2.1.2 Explicitly balancing calibration and sharpness with the combined calibration
loss

While MAQR can produce strong results, its performance can suffer in high-dimensional settings,

where nonparametric conditional density estimation methods falter. Neural networks (NNs) have

shown good performance in high dimensional settings, given their high capacity to approximate

complex functions and recent advances in fast gradient-based optimization. We therefore propose

a loss-based approach to estimating conditional quantiles for NNs and other differentiable models.

Drawing motivation from the arbitrary balance between calibration and sharpness that pin-

ball loss implicitly provides, we propose objectives separately for calibration and sharpness, Then,

we combine the two objectives into a single loss function that provides an explicit balance be-

tween calibration and sharpness that can be chosen by the end user.

We first consider calibration of a quantile prediction, Q̂p ∈ Y for quantile level p ∈ (0, 1).

Here, we omit conditioning on x for clarity. For this prediction to be average calibrated, exactly

a p proportion of the true density should lie below Q̂p, i.e. pobs

avg = P (Y ≤ Q̂p) = p. While

calibration (e.g. |pobs

avg − p|) is a non-differentiable objective, by inducing a truncated distribution

based on the current level of calibration, we can construct the following calibration objective,

which is minimized if and only if the prediction is average calibrated:

C(Q̂p, p) = I{p̂p < p} ∗ E[Y − Q̂p|Y > Q̂p] ∗ P (Y > Q̂p) (2.4)

+ I{p̂p > p} ∗ E[Q̂p − Y |Q̂p > Y ] ∗ P (Q̂p > Y ),where p̂p = P (Y ≤ Q̂p).

The empirical calibration objective, C(D, Q̂p, p), is then defined as follows:

C(D, Q̂, p) = I{p̂obs

avg < p} ∗ 1

N

N∑
i=1

[
(yi − Q̂p(xi))I{yi > Q̂p(xi)}

]
+ I{p̂obs

avg > p} ∗ 1

N

N∑
i=1

[
(Q̂p(xi)− yi)I{Q̂p(xi) > yi}

]
.

(2.5)

Note 1: Intuition of the calibration objective. For any given p, consider the case when the

quantile estimate Q̂p is below the true pth
quantile Qp. Since Q̂p < Qp =⇒ p̂p < p, this implies

that too much data density lies above Q̂p. In this case, C(Q̂p, p) reduces to E[Y − Q̂p|Y > Q̂p] ∗
P (Y > Q̂p). Q̂p is pulled higher with the expectation of the truncated distribution that places

Q̂p at the lower bound of the support. In the opposite case, when Q̂p > Qp, Q̂p is pulled lower

by the same logic.

Note 2: Is the proposed calibration objective a proper scoring rule? Strictly speaking, the cali-

bration objective is a non-decomposable function, hence deviates from the standard convention

10



of proper scoring rules Gneiting and Raftery [2007], which can be “decomposed” into scores for

individual examples (xi, yi). This simply arises from the fact that measuring average calibration

(i.e. p̂obs

avg) is non-decomposable. Proper scoring rules are defined such that an optimum of the

expected score (or risk, if we consider the score as a loss function) occurs at the true distribution

quantity. While an example level loss or score does not exist due to non-decomposability, we can

still show the (expectation-level) score (i.e. C(Q̂p, p)) is minimized by the true distribution and

hence enjoys the optimum property of proper scoring rules.

Proposition 2. For any quantile level p ∈ (0, 1), the true quantile function Qp minimizes the
calibration objective, C(Q̂p, p). Further, on a finite dataset D, the empirical calibration objective,
C(D, Q̂p, p), is minimized by an average calibrated solution on D, i.e. when p̂obsavg(D, p) = p.

Proof: The proof is given in Appendix of Chung et al. [2021].

Note 3: Non-zero gradients for miscalibrated predictions Q̂p. We can further show that for

a miscalibrated quantile prediction, the gradients of C are always non-zero. When p̂p < p,

∂C(Q̂p, p)/∂Q̂p = −P (Y > Q̂p) < 0. Thus increasing Q̂p decreases the objective C. Similarly,

when p̂p > p, ∂C(Q̂p, p)/∂Q̂p = P (Y < Q̂p) > 0, and an analogous argument follows (proof in

Appendix of Chung et al. [2021]).

As discussed in Section 2.1.2, average calibration by itself is not a sufficient condition for

meaningful UQ, hence we also desire sharp quantile models, with more-concentrated (less dis-

persed) distributions. We can induce this property in quantile predictions by predicting the

(1 − p)th
quantile Q̂1−p(xi) alongside each prediction Q̂p(xi) and penalizing the width between

the quantile predictions:

P(Q̂p, p) = E
[∣∣∣Q̂p − Q̂1−p

∣∣∣] . (2.6)

The empirical sharpness objective, P(D, Q̂p, p), is then defined as follows:

P(D, Q̂, p) =
1

N

N∑
i=1

Q̂1−p(xi)− Q̂p(xi) (p ≤ 0.5)

Q̂p(xi)− Q̂1−p(xi) (p > 0.5).
(2.7)

It is important to note that the true underlying distribution will not have 0 sharpness if there

is significant noise, and sharpness should be optimized subject to calibration. Therefore, we

should only penalize sharpness when the data suggests our quantiles are too dispersed, i.e. when∣∣pobs

avg(p)− pobs

avg(1− p)
∣∣
, the observed coverage between the pair of quantiles Q̂p(xi) and Q̂1−p(xi),

is greater than |2p− 1|, the expected coverage.
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Combining the calibration and sharpness terms, we have the combined calibration loss

L(D, Q̂p, p) = (1− λ)C(D, Q̂p, p) + λP(D, Q̂p, p). (2.8)

The hyperparameter λ ∈ [0, 1] sets the explicit balance between calibration and sharpness. Note

that setting λ = 0 may not always be desirable, since optimizing C(D, Q̂p, p) alone may converge

to quantiles of the marginal distribution, FY. Further, in certain downstream applications that uti-

lize UQ, a sharper prediction, even at the cost of worse calibration, may result in higher utility, and

λ can be tuned according to the utility function of the application. In our experiments, we tune

λ by cross-validating with adversarial group calibration as it is the strictest notion of calibration

that can be estimated with a finite dataset. Since we learn a quantile model that outputs the con-

ditional quantile estimates for all probabilities, our training objective is Ep∼Unif(0,1)L(D, Q̂p, p).

2.2.1.3 Encouraging calibration of centered intervals with the interval score

The combined calibration loss (Eq. 2.8) optimizes average calibration, which targets observed

probabilities below a quantile. In many applications, however, we may desire a centered predic-

tion interval (PI) which requires a pair of quantile predictions. A centered 95% PI, for example,

is a pair of quantile predictions at quantile levels 0.025 and 0.975. Hence, for the average cal-

ibration of the pth centered interval, we want

[
p̂obs

avg(0.5 +
p
2
)− p̂obs

avg(0.5−
p
2
)
]

(the PI’s observed

probability, a.k.a. prediction interval coverage probability (PICP) [Tagasovska and Lopez-Paz,

2019, Kabir et al., 2018, Pearce et al., 2018b]) to be equal to the expected probability p. While we

can modify the objective in Eq. 2.8 to adhere to this altered goal, here we propose simultaneously

optimizing the interval score (or Winkler score) [Gneiting and Raftery, 2007, Winkler, 1972] for

all expected probabilities p ∈ (0, 1), and bring to light a proper scoring rule that has largely been

neglected for the purpose of learning quantiles. While some previous works utilize the interval

score to evaluate interval predictions [Bracher et al., 2021, Bowman et al., 2020, Askanazi et al.,

2018, Maciejowska et al., 2016], to the best of our knowledge, no previous work has focused on

simultaneously optimizing it and shown a thorough experimental evaluation.

For a point (x, y), if we denote a (1−α) centered PI as l̂, û, i.e. l̂ = Q̂α
2
(x) and û = Q̂1−α

2
(x),

the interval score is defined as Sα(l̂, û; y) = (û − l̂) + 2
α
(l̂ − y)I{y < l̂} + 2

α
(y − û)I{y > û}.

We show in Appendix of Chung et al. [2021] that the minimum of the expectation of the interval

score is attained at the true conditional quantiles, l̂ = Qα
2
(·), û = Q1−α

2
(·). We train our quantile

model for all centered intervals (and hence all quantile levels) simultaneously by setting our loss

as Eα∼Unif(0,1)Sα.
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2.2.1.4 Inducing adversarial group calibration with group batching

The calibration loss (Section 2.2.1.2) and the interval score (Section 2.2.1.3) optimize for the av-
erage calibration of quantiles and centered intervals, respectively. To get closer to individual

calibration, one condition we can additionally require is adversarial group calibration. Since ad-

versarial group calibration requires average calibration over any subset of non-zero measure over

the domain, this is not fully observable with finite datasets D for all subset sizes. However, for

any subset in D with enough datapoints, we can still estimate average calibration over the sub-

set. Hence, we can apply our optimization objectives onto appropriately large subsets to induce

adversarial group calibration.

In practice, this involves constructing subsets within the domain and taking gradient steps

based on the loss over each subset. In naive implementations of stochastic gradient descent,

a random batch is drawn uniformly from the training dataset D, and a gradient step is taken

according to the loss over this batch. This is also the case in SQR [Tagasovska and Lopez-Paz,

2019]. The uniform draw of the batch will tend to preserve FX (the marginal distribution of X),

hence optimizing average calibration over this batch will only induce average calibration of the

model.

Instead, deliberately grouping the datapoints based on input features, and then batching and

taking gradient steps based on these batches, induces better adversarial group calibration. We

find in our experiments that adversarial group calibration improves significantly with simple

implementations of group batching.

To summarize, the main idea we introduce here with group batching is that, only taking

uniform batches from the training set (thus only drawing batches which preserve FX) can be

detrimental when optimizing for calibration. Thus, additionally drawing batches based on de-

liberate groupings within the training set (thus, batches which do not preserve FX) can help to

induce a stronger notion of calibration (i.e. adversarial group calibration) in the model than aver-

age calibration. This concept is quite general and allows for variations in implementations when

constructing the groups.

2.3 Calibration forMulti-dimensional Probabilistic Regres-
sion

This section is based on Chung et al. [2024].

We begin our discussion from the observation that the most widely studied notions of cali-

bration in regression are usually confined to the setting where the targets are single dimensional

[Gneiting et al., 2007, Pearce et al., 2018b, Kuleshov et al., 2018, Song et al., 2019, Cui et al., 2020,
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Figure 2.2: Pitfall of assessing the calibration of each dimension independently for multi-

dimensional distributional predictions. (FromLeft to Right) The predictive distribution (labeled

Pred) exhibits the opposite correlation in the output dimensions compared to the ground truth

(labeled GT ), but each of the marginal distributions are accurate. Assessing calibration of each

dimension separately suggests a well-calibrated predictive distribution. Highest density regions

(HDRs) are able to account for the dependence in the dimensions, and assessing HDR calibration

reveals the miscalibration of the joint distribution.

Zhao et al., 2020, Sahoo et al., 2021b, Kuleshov and Deshpande, 2022]. While multi-dimensional

regression models are widely used in machine learning, especially in applications such as model-

based control [Chua et al., 2018, Malik et al., 2019, Yu et al., 2020, Kidambi et al., 2020] or modeling

in the physical sciences [Sexton et al., 2012, Duraisamy et al., 2019, Abbate et al., 2021, Char et al.,

2023a], we find that methods which account for the joint multi-dimensional distribution in assess-
ing calibration and recalibrating the prediction is generally lacking. In lieu of more sophisticated

methods, calibration is often considered for each output dimension independently.

However, failing to account for interplay among the output dimensions may be problematic

when dependence does exist. In this case, the collection of marginals is not sufficient to provide

an accurate assessment of the prediction quality (see Figure 2.2 for an example).

In this work, we address the problem of calibration in multi-dimensional regression by first

formalizing a notion of calibration which can account for dependence among the output dimen-

sions and further proposing a recalibration algorithm for the joint predictive distribution. We

summarize our main contributions as follows:

• By leveraging existing ideas in highest density regions (HDR), we propose the notion of

HDR calibration, which accounts for dependence in the output dimensions in defining and

evaluating calibration for multi-dimensional distributional predictions.

• We develop a recalibration algorithm for multi-dimensions which produces HDR calibrated

predictive distributions via a sampling procedure.

• We provide extensive demonstrations of the merits of the notion of HDR calibration and the

efficacy of the recalibration algorithm on a suite of benchmark datasets in multi-dimensional
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regression, and two real-world datasets: a dynamics modeling task in nuclear fusion, and

a downstream decision-making application in forecasting customer demand.

We proceed by first describing the problem setting and relevant concepts to motivate the

definition of HDR calibration in Section 2.1. Based on this notion of calibration, we present our

proposed HDR recalibration algorithm in Section 2.3.5.

2.3.1 Setting and Notation

We consider the regression setting with an input feature space X ⊆ Rn
and a target space Y ⊆

RD
. We use xd

, Xd
, yd, and Y d

to denote the d
th

dimension of input and target vectors. f and F

denote the true probability density function (PDF) and cumulative distribution function (CDF),

and when it exists, we denote the true quantile function with F−1
. Estimates of these functions

are denoted with f̂ , F̂ and F̂−1
. We use subscripts to indicate the corresponding random variable

of the PDFs and CDFs (e.g. fX and FX are the marginal PDF and CDF of X , and fY |X and FY |X

are the PDF and CDF of Y conditioned on X). When conditioning on a specific value X = x,

we denote the conditional distribution functions as fY |x and FY |x. Lastly, we assume that new

target samples can be drawn from the distribution estimate, and we denote the random variable

corresponding to these new target samples as Ŷ . In particular, this can be done by sampling

X ∼ fX from the dataset and subsequently sampling Ŷ |X ∼ f̂Y |X . Importantly, note that the

distribution of Ŷ is still tied to the distribution of X .

2.3.2 Calibration in Univariate Regression

Before discussing the multi-dimensional setting, we first provide a brief review of notions of cali-

bration in the univariate setting. A widely accepted notion of calibration in univariate regression

is probabilistic calibration [Gneiting et al., 2007]. A predictive distribution F̂Y |X is probabilistically

calibrated if

P (Y ≤ F̂−1
Y |X(p)) = p,∀p ∈ (0, 1). (2.9)

This notion is also referred to as simply calibration [Kuleshov et al., 2018], quantile calibra-
tion [Song et al., 2019], or average calibration [Zhao et al., 2020, Chung et al., 2021] since it focuses

on the average validity of the predictive quantile function F̂−1
Y |X . We henceforth refer to this no-

tion as average calibration. Here, we note that the true distribution FY |X trivially satisfies Eq. 2.9

since FY |X(Y ) ∼ U(0, 1) by the probability integral transform and P (F̂Y |X(Y ) ≤ p) = p is the

CDF of U(0, 1).
From this general definition, subsequent works have derived various notions of calibration,

usually by placing different conditions in assessing the empirical probability (LHS of Eq. 2.9).
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For example, distribution calibration assesses average calibration conditioned on the predictive

distribution; individual calibration [Zhao et al., 2020] requires average calibration conditioned

on each input point, x ∈ X ; and group calibration [Kleinberg et al., 2016, Hébert-Johnson et al.,

2017] requires average calibration conditioned on specific subsets of the input space with non-

zero measure.

In all of the aforementioned notions, Y is assumed to be univariate (i.eY ⊆ R), and predictive

conditional quantiles F̂−1
Y |X : X × (0, 1) → Y are utilized to measure the discrepancy between

predicted and empirical probabilities (RHS and LHS of Eq. 2.9).

2.3.3 The Multi-dimensional Setting

While a naive application of the notions of univariate calibration to multi-dimensional distri-

bution functions may seem plausible, in the multivariate setting, the quantile function is not

well-defined [Belloni and Winkler, 2009], and further, FY (Y ) for Y ∈ RD, D > 1 is no longer

uniformly distributed [Barbe et al., 1996, Genest and Rivest, 2001]. To circumvent these issues,

prior works have suggested utilizing projections of the target variable Y in order to define and

assess calibration of multi-dimensional distributional predictions. We formalize such methods as

follows.

Consider a mapping g : X × Y → Z , where Z ⊆ R.

Furthermore, we let Z and Ẑ be the r.v.s over the projection outputs when using target labels

Y and Ŷ , respectively. Concretely, Z := g(X, Y ) and Ẑ := g(X, Ŷ ). Since sampling from the

predicted distribution is cheap, we can estimate the CDF FZ|X using the empirical distribution of

Ẑ|X . We refer to this empirical CDF as F̂Z|X .

Then, following the definition of average calibration (Eq. 2.9), we can define calibration in the

projected space as satisfying, ∀p ∈ (0, 1),

P (Z ≤ F̂−1
Z|X(p)) = p (2.10)

or equivalently, P (F̂Z|X(Z) ≤ p) = p. (2.11)

We can easily show that the optimal prediction F̂Y |X = FY |X satisfies this definition of calibration

in the projected space.

Proposition 1 The optimal distributional prediction, i.e. F̂Y |X = FY |X , satisfies calibration in the
projected space, Eq. 2.11. (proof in Appendix of Chung et al. [2024])

Several prior works have proposed specific versions of Eq. 2.11 with specific projection func-

tions. Ziegel and Gneiting [2014] introduced copula calibration by utilizing the predictive CDF
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as the projection function (i.e. g(X, ·) = F̂Y |X ). In this specific case, the distribution of the

projections is called the Kendall distribution [Nelsen et al., 2003].

One can also utilize the predictive PDF for the projection function such that g(X, ·) = f̂Y |X , in

which case Eq. 2.11 bears intrinsic relationships to existing concepts of highest predictive density

(HPD) values [Harrison et al., 2015, Dalmasso et al., 2020, Zhao et al., 2021a] and highest density

regions (HDR) [Hyndman, 1996].

While there are several candidates for projection functions, in this work, we choose to focus

on using the predictive PDF. In particular, we leverage its connections with HPD and HDR to

formalize a notion of calibration in multi-dimensions (Defn. 1) and propose a recalibration pro-

cedure that achieves this notion of calibration (Section 2.3.5). Hence, in the rest of this work, we

always assume Z := f̂Y |X(Y ) and Ẑ := f̂Y |X(Ŷ ).

For any given (x, y), HPDx(y) is a measure of how plausible y is w.r.t f̂Y |x and is defined as

HPDx(y) =

∫
y′:f̂Y |x(y′)≥f̂Y |x(y)

f̂Y |x(y
′)dy′. (2.12)

In words, HPDx(y) is the predicted probability of observing Ŷ that is more likely than y, where

the likelihood is determined by f̂Y |x. Considering the definition of Z and Ẑ , we see that

HPDx(y) (2.13)

= P (f̂Y |x(Ŷ ) ≥ f̂Y |x(y) | X = x) (2.14)

= 1− F̂Z|x(f̂Y |x(y)). (2.15)

Further, HPD values, which are probabilities, have a direct relationship to HDRs, which are pre-
diction sets.

For clarity, we provide a definition of HDR below using our notation, and we refer the reader

to Appendix of Chung et al. [2024] for the original notation by Hyndman [1996]. For a fixed x

and constant λ ∈ R, we define the λ-density region as DRx(λ) := {y : f̂Y |x(y) ≥ λ}.
Then for a given coverage level p, the p-HDR is the smallest density region with probability

greater than or equal to p. Concretely,

HDRx(p) := DRx(λ
∗)

where λ∗ = sup{λ : P (Ŷ ∈ DRx(λ)|X = x) ≥ p}.

By their definitions, the following equivalence holds:

HPDx(y) ≤ p ⇐⇒ y ∈ HDRx(p) (2.16)
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We note that calibration is generally defined in terms of prediction sets of a distribution, and

drawing on the intrinsic relationships between HDR, HPD and Eq. 2.15, we formalize Eq. 2.11

with the notion of HDR calibration:

Definition 1 A predictive PDF f̂Y |X is HDR calibrated if, ∀p ∈ (0, 1),

P (Y ∈ HDRX(p)) = p (2.17)

or equivalently, P (HPDX(Y ) ≤ p) = p. (2.18)

Proposition 2 HDR calibration holds if and only if Equation 2.11 holds. (proof in Appendix of
Chung et al. [2024])

Similar to average calibration (Eq. 2.9), which requires Y to be contained in the p-prediction

set (defined by the pth
quantile) with probability p, HDR calibration requires the p-HDR to contain

Y with probability p.

Utilizing projections allows one to define notions of calibration in the multi-dimensional set-

ting which can account for dependence in the output dimension, granted that the projection

function models the dependence. Further, based on the definitions, one can assess calibration (or

miscalibration) via the discrepancy between the predicted and empirical probabilities. Following

the commonly used notion of expected calibration error (ECE) [Guo et al., 2017, Cui et al., 2020,

Tran et al., 2020, Chung et al., 2021] we can measure the (L1-)ECE w.r.t the general notion of

calibration defined in Eq. 2.11 as

Ep∼U(0,1)

∣∣∣P (F̂Z|X(Z) ≤ p)− p
∣∣∣ . (2.19)

Not only do these metrics allow one to evaluate the quality of uncertainty for multi-dimensional

predictions, but they can also be used to improve a model’s predictive distribution via recalibra-

tion.

2.3.4 Recalibration

Probabilistic models are usually trained by optimizing a loss function which may not be neces-

sarily aligned with calibration. This can often lead to models being miscalibrated at the end of

the training [Guo et al., 2017, Kuleshov et al., 2018, Chung et al., 2021].

A post-hoc recalibration step can be applied on top of the trained model to adjust for its level

of miscalibration observed on a held-out calibration or validation dataset.
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Post-hoc recalibration is well-studied in classification, and there are several methods which

have proven to be effective in producing well-calibrated (discrete) class probabilities [Platt et al.,

1999, Zadrozny and Elkan, 2001, 2002, Guo et al., 2017, Gupta and Ramdas, 2021].

This problem is not as widely studied in regression, however, and to the best of our knowledge,

the most popular method is that of Kuleshov et al. [2018], which learns an isotonic mapping

between expected and observed quantile levels. Crucially, this method readily applies only to

the case when the targets Y are univariate, and we henceforth refer to this algorithm as “single

dimensional (SD) recalibration”. In Section 2.3.5, we propose a recalibration procedure for the

multivariate setting.

While also proposed for the single dimensional setting, it is worth mentioning that Izbicki

et al. [2022] proposes a conformal prediction method which bears relevance as their method

utilizes HPD values as the conformity score. However, there are key differences: while they

are focused on producing prediction sets for a fixed coverage level (as is the goal of conformal

prediction), we are focused on expressing the full predictive distribution. Crucially, since Izbicki

et al. [2022] does not consider multi-dimensional target spaces, their method does not account

for dependence in the target dimensions, and the algorithm relies on constructing a finite grid

of the target space, which is ill-suited for higher dimensions. As we will discuss in Section 2.3.5,

our recalibration procedure explicitly addresses dependence in the target dimensions and is more

scalable as it focuses on sampling from a predictive distribution in the multi-dimensional space.

2.3.5 Method

In this section, we describe our proposed recalibration procedure which aims to achieve HDR

calibration (Defn. 1). We describe the procedure in two parts. Section 2.3.5.1 details the recali-

bration algorithm that aims to optimize for Eq. 2.11, which is equivalent to HDR calibration by

Proposition 2. Afterwards, Section 2.3.5.2 describes a pre-conditioning step that can modify the

predictive PDF to account for dependence in the output dimensions when applying the recalibra-

tion algorithm.

2.3.5.1 HDR Recalibration Algorithm

The proposed recalibration algorithm is comparable to that of Kuleshov et al. [2018] for univariate

settings, but with key differences – the recalibration occurs in the projected space Z , and the

recalibration output must be translated back into the target space Y .

First, we estimate a recalibration mapping in the projected space by using observations of

the random variable F̂Z|X(Z) with a calibration dataset {(xi, yi)}Ni=1, i.e. the observed values

are {F̂Z|xi
(zi)}Ni=1 where zi = f̂Y |xi

(yi). To elaborate more on this procedure, note that zi is a
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Figure 2.3: Demonstration of HDR recalibration on a marginal distributional prediction. (Top
Left) The initial prediction (labeled Pred) displays bias in the mean prediction and fails to model

the correlation in the ground truth distribution (labeled GT ). (Top Row) Without the PDF ad-

justment step, we observe that observations (GT points) fall more often in the higher level HDRs

(level sets defined by darker boundaries) than lower level HDRs (level sets bounded by lighter

colors). HDR recalibration re-samples from each HDR according to the observed frequencies (i.e.

the learned recalibration mapping), hence when producing recalibrated samples, the higher level

HDRs (i.e. outer level sets of f̂ ) are over-sampled and the lower level HDRs (inner level sets of f̂ )

are under-sampled. The resulting recalibrated samples are HDR calibrated (right-most plot), but

we can visually assess that the samples are suboptimal and in particular, fail to model the corre-

lation in the dimensions. (Bottom Row) Before the recalibration procedure, we can estimate the

bias in the mean on the calibration dataset and correlation in the dimensions with the correlation

matrix of the mean prediction error. After applying these two adjustments, HDR calibration re-

veals that each p-HDR contains more than p proportion of the observations (which also indicates

that the level sets are too wide). Hence, HDR recalibration proportionately under-samples from

each HDR, which results in well-calibrated samples that also reflect the correlation in the output

dimensions.

scalar value produced by evaluating the PDF f̂Y |xi
at yi, where f̂Y |xi

is the PDF of the predictive

distribution. F̂Z|xi
(zi) is also a scalar value produced by evaluating the CDF F̂Z|xi

at zi, however,

F̂Z|xi
is an empirical CDF over the projected space that is estimated by producing samples from

the predictive distribution f̂Y |xi
. Again, we note that sampling from the predictive distribution is

cheap, thus estimating this empirical CDF is also cheap.

Afterwards, we learn the monotonic mapping R : [0, 1]→ [0, 1] where R(p) := P (F̂Z|X [Z] ≤
p). R is then applied to the predictive distribution at each x, F̂Z|x, to produce the recalibrated

predictive distribution R ◦ F̂Z|x.
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Algorithm 3 HDR Recalibration: Training

1: Input: Calibration dataset {(xi, yi)}Ni=1,

predictive PDF f̂Y |X .

2: f̂Y |X ← ADJUST(f̂Y |X).
3: Construct the dataset C =
{F̂Z|xi

(zi)}Ni=1, where zi = f̂Y |xi
(yi).

4: Sort values in C to construct {c(i)}Ni=1,

construct the recalibration dataset C ′ =
{i/N, c(i)}Ni=1.

5: Learn the recalibration mappingR on C ′.

6: Output: Recalibration mapping R.

Algorithm 4 HDR Recalibration: Sampling

1: Input: Test point x, predictive PDF

f̂Y |X , recalibration mapping R, number

of samples M .

2: f̂Y |X ← ADJUST(f̂Y |X).
3: Construct D = {(ŷj, ẑj)}Mj=1 by produc-

ing M samples ŷj ∼ f̂Y |x and setting

ẑj = f̂Y |x(ŷj).
4: Re-sample from D to construct D′ =
{(ŷk, ẑk)}Mk=1 s.t. {ẑk}Mk=1 approximately

follows R ◦ F̂Z|x.

5: Output: Recalibrated samples at x,

{ŷk}Mk=1.

Proposition 3 Consider R ◦ F̂Z|X for an invertible mapping R. Then R ◦ F̂Z|X satisfies Eq. 2.11,
i.e.

P (R ◦ F̂Z|X(Z) ≤ p) = p ∀p ∈ (0, 1).

(proof in Appendix of Chung et al. [2024])

One can therefore use such a recalibration map, R, to draw new, calibrated samples in Z
space. However, it remains unclear how to relate these samples back to their counterparts in

Y space. To address this issue, we present a sampling algorithm that operates over samples of

r.v. Ŷ . The key idea is to re-sample from the set of samples generated from f̂Y |X according to

what the distribution should look like in Z space. In particular, for any fixed x, we can draw

many samples from the predictive PDF, {ŷj}Mj=1 ∼ f̂Y |x, then apply the projection f̂Y |x(·) to

produce the dataset of tuples D = {(ŷj, ẑj)}, where ẑj = f̂Y |x(ŷj), and note that by definition,

ẑj ∼ f̂Z|x, F̂Z|x. We then re-sample from D to produce {(yk, zk)} ⊆ D such that the distribution

of {zk} is more closely aligned with R ◦ F̂Z|x. Concretely, this is done by forming an empirical

CDF of the Ẑ samples {ẑj} using binning, re-weighting each bin to match R ◦ F̂Z|x, then re-

sampling from each bin according to the adjusted weights. The full algorithm is summarized in

Algorithms 3 and 4: Algorithm 3 describes the procedure for learning the recalibration map R,

and Algorithm 4 describes the test time sampling procedure. Crucially, the corresponding {yk}
are HDR calibrated.

Proposition 4 Suppose that Ẑ ∼ R ◦ F̂Z|X and that R is an invertible mapping. Then the distri-
bution of Ŷ is HDR calibrated. (proof in Appendix of Chung et al. [2024])
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2.3.5.2 Adjusting the Predictive PDF

The HDR recalibration algorithm from Section 2.3.5.1 produces a predictive distribution (via sam-

ples) s.t. the p-HDR contains p proportion of the target observations, on average, ∀p ∈ (0, 1).

However, this predictive distribution can still fail to address dependencies among the output di-

mensions. This is because, for any fixed x, the HDRs are constructed with level sets of f̂Y |x, and,

if f̂Y |x fails to model dependencies, then the recalibrated samples will also express independence

among the output dimensions. We provide an illustration in Figure 2.3. The top row shows

that the pre-hoc predictive distribution assumes independence in the output dimensions, which

is reflected in the spherical boundaries of the HDRs. After HDR recalibration, the shape of the

recalibrated distribution is still spherical, even though the calibration dataset (i.e. ground truth

(GT) observations in blue) displays correlation among the dimensions.

This highlights the importance of the projection function f̂Y |X , and ideally, f̂Y |X should better

reflect the true distribution in order for the recalibration procedure to produce more accurate

samples. Further, if we can estimate the errors in f̂Y |X (e.g. correlation, bias) with a held-out

dataset, it can be beneficial to adjust f̂Y |X for these factors prior to recalibration.

As a concrete instantiation of this adjustment, we propose a simple procedure to adjust the

PDF of multivariate Gaussian distributions by estimating the bias in the predicted mean (i.e. the

location of the HDRs), standard deviation (i.e. the width of the HDRs in each dimension), and the

correlation in output dimensions (i.e. the shape of the HDRs) with a held-out dataset and correct-

ing the PDF for each of these aspects. We provide details on each adjustment in the Appendix

of Chung et al. [2024], and we suggest applying the composition of these adjustments prior to

recalibration, as indicated with the ADJUST step in Line 2 of Algorithms 3 and 4. The bottom row

of Figure 2.3 provides an illustration of the mean adjustment and correlation adjustment. We can

observe that the resulting recalibrated samples more closely reflect the ground truth distribution.
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CHAPTER 3

Proposed Work

While the major body of work in UQ is focused on achieving calibration among various UQ

metrics, the existing discussion is fairly detached from the actual use-cases of the quantified

uncertainties. In fact, there is evidence that calibration may not necessarily even be the ideal

notion of ”goodness” of a predictive distribution for an application settings that explicitly utilize

the uncertainties. One such example is Bayesian optimization (BO), where there are conflicting

arguments on the utility of calibration. Deshpande et al. [2024] report the positive utility of

calibration for Bayesian optimization (BO), while Foldager et al. [2023] report low correlation

between calibration and the performance of BO.

At a high level, we believe that UQ should not be an end goal by itself, and it should demon-

strate its value through its use-cases. In the same vein, we believe that achieving good calibration

metrics is secondary to the utility the model provides when using it for downstream applications.

In that sense, we contend that each application setting or task will define its own set of charac-

teristics that determine the goodness of a predictive distribution, and there is no single metric,

not even calibration, that universally determines how well a model will perform on all tasks. As a

direct example of this, consider the threshold-based decision-making problem setting described

in Sahoo et al. [2021a], where an outcome is dictated by whether a target variable of interest,

Y is above or below a fixed threshold value, y0, and an agent takes binary action based on the

predicted probability of the target variable being below the threshold, i.e. P̂ (Y ≤ y0). As an

illustration of the problem setting, suppose an agent has a predictive model which outputs the

expected inches of rain for the day (Y ), and the agent believe 0.05 inches of rain (y0) is durable,

hence the agent will only decide to take a heavy umbrella if it is likely that it will rain more

than 0.05 inches, and the cross product of the binary outcome with binary actions will each in-

cur a loss. Sahoo et al. [2021a] show that predictive distributions that are average calibrated will

not adequately ensure low loss in this task, and rather a new notion of calibration, which they

term threshold calibration, is needed. Conversely, it is reasonable to assume that threshold cal-

ibration will not necessarily be the optimal measure of the utility that a model will provide for

all decision-making problems. Chung et al. [2023] provides a similar discussion on the need for
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a problem-specific notion of calibration. Zhao et al. [2021b] provides further examples of how

different notions of calibration in classification each provide a notion of optimality for different

classes of decision-making problems.

There are other instances of problem settings where uncertainty is important, but the dis-

cussion of calibration is not clearly elucidated, insignificant, or missing, such as in dynamics

learning [Char et al., 2023b, 2021, Mehta et al., 2020], out-of-distribution (OOD) detection [Igoe

et al., 2022], or active learning [Settles, 2009].

This is not to discredit calibration as a metric – the ideal predictive distribution will (obviously)

achieve perfect calibration and calibration has a unique position as being highly interpretable

among metrics for distributional predictions. Rather, we are questioning whether it is actionable.
In this thesis, we argue that the purpose of calibration should be largely two-fold:

1. one desires the model outputs to behave like probabilities that describe the outcomes

2. simultaneously, the model outputs should be catered to the task that it will be used for and

output meaningful distributional that best aid that task

With these arguments in mind, we propose several research directions that address using distri-

butional predictions for downstream applications.

3.1 Calibrated Routing in Soft Mixture of Experts

Mixture of experts (MoE) are a family of model architectures which allow efficient scaling of

model size. While the standard deep learning architecture features dense layers, the weights of

which are activated by all inputs, in MoEs, these layers are divided up into multiple layers, and

each input unit (i.e. token) will selectively activate one or a subset of these layers. This allows

one to increase the total number of parameters in a model while keeping the computational cost

of a single forward pass manageable.

While the archetypical MoE is the “Sparse MoE”, which discretely routes each input token to

a subset of the experts, the discrete routing operation causes various issues in optimization and

inference. To alleviate these issues, the recently introduced Soft MoE [Puigcerver et al., 2024]

eschews discrete matching in favor of a smoother approach. It computes for each expert a convex

combination of the input tokens, and the expert only sees this convex combination. The final

output of the model is then a convex combination of each expert’s output. This approach is fully

differentiable, and hence is more stable than the Sparse MoE. This novel Soft MoE architecture

has been shown to outperform all other baselines on challenging large scale vision tasks, and can

scale to thousands of experts [Puigcerver et al., 2024]. Moreover, recent results show that the
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Soft MoE is a promising avenue towards providing empirical scaling laws for deep reinforcement

learning [Obando Ceron et al., 2024].

We briefly discuss the Soft MoE architecture [Puigcerver et al., 2024]. Let X ∈ Rm×d
denote

the tokenized input, so that there are m tokens each in Rd
. The MoE layer is equipped with n

experts {fj : Rd → Rd}nj=1, each of which is typically implemented as a feedforward network.

The router is parameterized by Φ ∈ Rd×n
. Given an input X , the parameters Φ are used to

compute matrices D(X), C(X) ∈ Rm×n
which are defined elementwise as

D(X)ij =
exp

(
(XΦ)ij

)
∑m

i′=1 exp
(
(XΦ)i′j

) and C(X)ij =
exp

(
(XΦ)ij

)
∑n

j′=1 exp
(
(XΦ)ij′

) . (3.1)

Note that each column of D(X) and each row of C(X) sums to one. With this notation in hand,

we formally define the Soft MoE layer below.

Definition 1 The Soft MoE is a function sMoEΦ
{fj}nj=1

: Rm×d → Rm×d defined as

sMoEΦ
{fj}nj=1

(X) = C(X)Ỹ (X) where Ỹ (X) =


f1

(
(D(X)TX)1

)
...

fn
(
(D(X)TX)n

)
 .

The Soft MoE thus computes n different convex combinations of the tokens in X , where the

weights of the jth convex combination are given by the jth column of D(X). It then applies

expert fj to the jth convex combination, for each j = 1, 2 . . . n. Finally, it computes m different

convex combinations of these expert outputs, where the weights of the ith convex combination

are given by the ith row of C(X). Note that each expert processes a single vector in Rd
, and

that sMoE is differentiable whenever the experts are. This results in more stable training relative

to Sparse MoE, where each expert is given a subset of the m tokens via a discrete matching

algorithm. The Soft MoE has shown significant empirical success in vision [Puigcerver et al.,

2024] and reinforcement learning [Obando Ceron et al., 2024].

We note that the Soft MoE module leverages 2 softmax distributions: D(X) and C(X). The

i
th

column of D(X) denotes the distribution over the input tokens that the i
th

expert should attend

to, and the i
th

row of C(X) denotes the distribution over the expert outputs that the i
th

output

token should attend to.

We ask the question of whether these distributions are calibrated. In the context of model

inference for prediction, we can define the task at hand as accurate classification (i.e. aiming for

test accuracy), and with this notion of a task, we can define the purpose of calibration of the

distributions C(X) and D(X) as making them as informative as possible to produce accurate
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predictions.

Further, if one could efficiently identify the most informative token/expert to attend to based

on the calibrated distribution, this information can be used to prune the model during inference

and save compute.

3.2 Parameterized Proper Scoring Rules

Proper scoring rules are functions which assess the quality of predicted probability distributions.

Given a distributional prediction P that is an element of the space of probability distributions ∆,

and an outcome space Y , a proper scoring rule S : ∆ × Y → R is a function that evaluates the

quality of the prediction P based on the observed outcome. Given an outcome y, the assigned

score is S(P, y), and when the y ∼ Q, the expected score is denoted as S(P,Q).

Proper scoring rules enjoy the property that the expected score is maximized by the true

distribution of the outcomes, i.e. S(Q,Q) ≥ S(P,Q),∀P ∈ ∆, and the score is said to be strictly
proper if the maximum value is attained if and only if P = Q.

Gneiting and Raftery [2007] summarized various properties of proper scoring rules that have

been discussed across various works, and they make note of the correspondence between proper

scoring rules and convex functions. Specifically, each proper scoring rule S corresponds to a

convex function G : ∆→ R, whereby for any predicted probability P and outcome y,

S(p, y) = G(p)− Ew∼pG
′(p, w) +G′(p, y), (3.2)

where G′(P,w) denotes the subtangent of G at P ∈ ∆, evaluated at the point w ∈ Y .

For simplicity, we confine the problem setting to the classification with m total classes and ∆

is the m − 1 probability simplex, i.e. P is an m-dimensional vector denoting class probabilities,

and G′(P ) is also an m-dimensional vector. Then we can rewrite Eq. 3.2 as

S(p, y) = G(p)−G′(p)Tp+G′(p)y, (3.3)

where G′(P )y denotes the yth
element of G′(P ) (Theorem 2, Gneiting and Raftery [2007]; they

also refers to this as the Savage representation of proper scoring rules.)
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Given the ground truth distribution Q, the expected score, S(P, Q), is then,

S(P,Q) = Ey∼Q[G(P )−G′(P )TP +G′(P )y] (3.4)

= G(P )−G′(P )TP + Ey∼Q[G
′(P )y] (3.5)

= G(P )−G′(P )TP +G′(P )TQ (3.6)

= G(P )−G′(P )T (P −Q). (3.7)

(3.8)

Further, the maximum score achievable is S(Q,Q),

S(Q,Q) = G(Q)−G′(Q)T (Q−Q) (3.9)

= G(Q). (3.10)

(3.11)

There are many interpretations of the function G. Gneiting and Raftery [2007] refers to this

function as

• information measure,

• generalized entropy function,

• or simply, entropy function.

For example, when G is the negative Shannon Entropy function G(P ) = −
∑

i∈[m] Pi log pi,

the corresponding scoring rule is the log score, also known as the cross-entropy loss, S(P, y) =

logPy.

An alternative viewpoint of G is that it is a

• utility function

in a decision-making setting. Suppose an agent makes probabilistic predictions about the out-

come, and always takes the Bayes decision rule according to the belief: given a the probability P ,

denote the Bayes decision rule as aP , and the utility function as U : Y × A → R. By definition

of Bayes decision rule,

aP = arg sup
a∈A

Ey∼P [U(y, a)] (3.12)

If we denote

S(P, y) = U(y, aP ), (3.13)
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i.e., S(P, y) is the maximal utility the agent can incur under their belief, then

G(Q) = S(Q,Q) (3.14)

= Ey∼Q[S(Q, y)] (3.15)

= Ey∼QU(y, aQ), (3.16)

which is the maximum utility the agent can derive from the decision-making task where the

ground truth distribution of outcomes is Q.

Given these interpretations, we ask the following questions:

• There is evidence of the squared-loss performing at least as well as cross-entropy for a wide-
range of classification tasks [Hui and Belkin, 2020] - can we devise better loss functions that
are specific to how the model will be used downstream?

• For these cases, what interpretation would the utility function (or entropy) have? Would it
suggest an better alternative utility function compared to the Shannon entropy function?

Furthermore, we know from Eq. 3.2 that any convex function produces a proper scoring rule.

Crucially, we can parameterize the convex function and aim to learn the optimal convex function

for the problem setting at hand.

Consider the utility function G as follows:

G(p) = pTA log p (3.17)

where A is an m × m matrix and log p denotes the element-wise logarithm of p. While this

function is not convex for any arbitrary A, it should be convex under suitable conditions. For

example, the Shannon entropy function is subsumed under this parameterization when A = I .

Therefore, using the cross-entropy loss signifies using the above utility function with A confined

to be the identity matrix.

3.2.1 Learnable Utility Functions

As my first proposed work, I aim to work with the conjecture that, the optimal utility function is

different for each downstream task and that it is learnable. I.e. depending on how the classification

model will be used in the end, it can be advantageous to deviate from Shannon entropy as the

utility function and 1) set a different, designated convex function as the utility function and 2)

derive the proper scoring rule implied by the utility function and optimize it during training. We

can rely on the fact that any convex function produces a proper scoring rule, which by definition,

is optimized at the true underlying distribution.
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There are many different ways to parameterize a convex function. One simple form is the

quadratic:

Gθ(p) = pTAp (3.18)

with θ = {A} and A a PSD matrix.

Other parameterizations include

Gθ(p) = pTA log p (3.19)

where A is a diagonal matrix and

Gθ(p) =
∑
i∈[n]

ϕi(p) (3.20)

where each {ϕi} are convex functions.

A much more complex form is using input convex neural networks [Amos et al., 2017]

Gθ(p) = ICNNθ(p) (3.21)

In the first line of proposed work, we aim to formalize an algorithm for learning the function

G. At the time of writing, it is unclear what the objective for learning G should be. Given that

the status quo is to use the negative Shannon entropy function as the utility function guiding

optimization (via the cross-entropy loss) in virtually all classification problems, it stands to rea-

son that given different downstream applications of the classification model, a different utility

function (and its derived proper scoring rule) can provide higher downstream performance.

We believe there are various learning schemes that are possible:

• learning from the loss/utility function that defines the downstream application

• learning from data (i.e. samples from the ground truth distribution)

3.2.2 Application to Language Models

We believe language models provide for a unique and impactful application of the techniques pro-

posed above. Lanaguage models are typically modeled as predicting future tokens, each of which

are considered discrete classes from a dictionary which define the vocabulary set. In modern ar-

chitectures, language modeling presents perhaps the largest scale classification problem yet. E.g.

Llama 3 [Dubey et al., 2024], the tokenizer utilizes 128,000 tokens, meaning the prediction task

is a classification task among 128K classes. The standard practice is to use the cross-entropy loss

during training. Again, using the cross-entropy loss indicates using negative Shannon entropy

as the fixed utility function, which is symmetric in all classes (i.e. tokens).
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We believe there are several interesting research directions when applying the proposed tech-

niques.

3.2.2.1 Next token prediction

We consider the pre-training objective, which is the next token prediction task. This setting is

analogous to the standard supervised learning for classification. The cross-entropy loss treats

each token symmetrically, and this also reflected in the symmetry of the Shannon entropy func-

tion. However, we conjecture that there are tokens which are more important or informative than

others. We hypothesize that encoding this asymmetry in the utility function, and subsequently

the proper scoring rule as the loss function, should help accelerate training and convergence to

a better local optimum. There are several questions and challenges in this direction.

1. Operating in the semantic space of tokens: While benchmark datasets in classification such

as MNIST or CIFAR feature independent classes, the classes in language modeling are to-

kens which, even at the atomic token level, should display dependence. When considering

the semantic meaning of words/sentences that each token often comprise, their dependence

should be even starker. The utility function should ideally model these dependencies.

2. High dimensional probability vectors: In addition, the predicted distribution when predict-

ing a next token is now 128K dimensional. If we consider the quadratic parameterization

in Eq. 3.18, the matrix A becomes 128K×128K≈ 16B dimensional. One could use low-rank

approximations of the parameters to alleviate this burden, or use ICNN’s with small hidden

layers.

3.2.2.2 Fine tuning

More often than not, language models are adapted for a specific use-case via a fine-tuning process

that is also referred to as “alignment”. It would be an interesting direction to encode the desired,

aligned behavior into a utility function, which in turn would provide for a proper scoring rule

which one can optimize the language model with. This would necessitate several extensions to

the framework described in the previous section.

1. Sentence-level utility and scoring functions: Both the functions G and S operate on a single

probability vector that predict a single token, but it would be ideal to devise a sentence-level

function which can operate on inputs that is comprised of a sequence of tokens.

2. Alignment of the utility with the dataset: The alignment dataset already encodes a notion

of utility: given a certain prompt, the “winning” response is preferred over the “losing”

response. The utility function should ideally align with this implied utility in the data.
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We intend to follow standard evaluation protocol in alignment to evaluate the proposed

method, e.g. [Rafailov et al., 2024, Meng et al., 2024].
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3.3 Timeline

Figure 3.1 shows my plan for a timeline moving forward.

2024 2025
Oct Nov Dec Jan Feb Mar Apr May

Proposed Work 1 ICML Submission

Proposed Work 2 Submit

Write Thesis and Defend

Figure 3.1: Timeline for graduation.
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